Transporters involved in renal excretion of N-carbamoylglutamate, an orphan drug to treat inborn n-acetylglutamate synthase deficiency.

نویسندگان

  • Elisabeth Schwob
  • Yohannes Hagos
  • Gerhard Burckhardt
  • Birgitta C Burckhardt
چکیده

Inborn defects in N-acetylglutamate (NAG) synthase (NAGS) cause a reduction of NAG, an essential cofactor for the initiation of the urea cycle. As a consequence, blood ammonium concentrations are elevated, leading to severe neurological disorders. The orphan drug N-carbamoylglutamate (NCG; Carbaglu), efficiently overcomes NAGS deficiency. However, not much is known about the transporters involved in the uptake, distribution, and elimination of the divalent organic anion NCG. Organic anion-transporting polypeptides (OATPs) as well as organic anion transporters (OATs) working in cooperation with sodium dicarboxylate cotransporter 3 (NaDC3) accept a wide variety of structurally unrelated drugs. To test for possible interactions with OATPs and OATs, the impact of NCG on these transporters in stably transfected human embryonic kidney-293 cells was measured. The two-electrode voltage-clamp technique was used to monitor NCG-mediated currents in Xenopus laevis oocytes that expressed NaDC3. Neither OATPs nor OAT2 and OAT3 interacted with NCG, but OAT1 transported NCG. In addition, NCG was identified as a high-affinity substrate of NaDC3. Preincubation of OAT4-transfected human embryonic kidney-293 cells with NCG showed an increased uptake of estrone sulfate, the reference substrate of OAT4, indicating efflux of NCG by OAT4. In summary, NaDC3 and, to a lesser extent, OAT1 are likely to be responsible for the uptake of NCG from the blood. Efflux of NCG across the luminal membrane into the tubular lumen probably occurs by OAT4 completing renal secretion of this drug.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N-acetylglutamate synthase deficiency: an insight into the genetics, epidemiology, pathophysiology, and treatment

The conversion of ammonia into urea by the human liver requires the coordinated function of the 6 enzymes and 2 transporters of the urea cycle. The initial and rate-limiting enzyme of the urea cycle, carbamylphosphate synthetase 1 (CPS1), requires an allosteric activator, N-acetylglutamate (NAG). The formation of this unique cofactor from glutamate and acetyl Coenzyme-A is catalyzed by N-acetyl...

متن کامل

Role of carglumic acid in the treatment of acute hyperammonemia due to N-acetylglutamate synthase deficiency

N-acetylglutamate synthase (NAGS) deficiency is a rare inborn error of metabolism affecting ammonia detoxification in the urea cycle. The product of NAGS is N-acetylglutamate which is the absolutely required allosteric activator of the first urea cycle enzyme carbamoylphosphate synthetase 1. In defects of NAGS, the urea cycle function can be severely affected resulting in fatal hyperammonemia i...

متن کامل

N-acetylglutamate synthase deficiency: Novel mutation associated with neonatal presentation and literature review of molecular and phenotypic spectra

The urea cycle is the main pathway for the disposal of excess nitrogen. Carbamoylphosphate synthetase 1 (CPS1), the first and rate-limiting enzyme of urea cycle, is activated by N-acetylglutamate (NAG), and thus N-acetylglutamate synthase (NAGS) is an essential part of the urea cycle. Although NAGS deficiency is the rarest urea cycle disorder, it is the only one that can be specifically and eff...

متن کامل

Inhibition of carbamoyl-phosphate synthase (ammonia) by Tris and Hepes. Effect on Ka for N-acetylglutamate.

The apparent Ka for N-acetylglutamate of rat liver carbamoyl-phosphate synthase is 11 microM in phosphate buffer, a value 10-fold lower than reported in other buffer systems. Tris and Hepes inhibit competitively with N-acetylglutamate. The proportion of carbamoyl-phosphate synthase in the active enzyme-acetylglutamate complex in vivo may be higher than previous calculations suggest, which re-op...

متن کامل

Gulf war illnesses.

1 The Lancet. Solutions to the R&D crisis for neglected diseases. Lancet 2008; 372: 1784. 2 Bachmann C, Krähenbühl S, Colombo JP, Schubiger G, Jaggi KH, Tönz O. N-acetylglutamate synthetase defi ciency: a disorder of ammonia detoxication. N Engl J Med 1981; 304: 543. 3 Caldovic L, Morizono H, Panglao MG, et al. Cloning and expression of the human N-acetyglutamate synthase gene. Biochem Biophys ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 307 12  شماره 

صفحات  -

تاریخ انتشار 2014